Vascular Mimicry: A Novel Neovascularization Mechanism Driving Anti-Angiogenic Therapy (AAT) Resistance in Glioblastoma
نویسندگان
چکیده
Glioblastoma (GBM) is a hypervascular neoplasia of the central nervous system with an extremely high rate of mortality. Owing to its hypervascularity, anti-angiogenic therapies (AAT) have been used as an adjuvant to the traditional surgical resection, chemotherapy, and radiation. The benefits of AAT have been transient and the tumors were shown to relapse faster and demonstrated particularly high rates of AAT therapy resistance. Alternative neovascularization mechanisms were shown to be at work in these resilient tumors to counter the AAT therapy insult. Vascular Mimicry (VM) is the uncanny ability of tumor cells to acquire endothelial-like properties and lay down vascular patterned networks reminiscent of host endothelial blood vessels. The VM channels served as an irrigation system for the tumors to meet with the increasing metabolic and nutrient demands of the tumor in the event of the ensuing hypoxia resulting from AAT. In our previous studies, we have demonstrated that AAT accelerates VM in GBM. In this review, we will focus on the origins of VM, visualizing VM in AAT-treated tumors and the development of VM as a resistance mechanism to AAT.
منابع مشابه
P112: Tumour Associated Macrophages and Vasculogenic Mimicry: A New Insight in Glioblastoma Treatment
Glioblastoma is one of the most common brain tumors in adults with poor prognosis, aggressiveness, and treatment resistance. Vasculogenic mimicry (VM) consists of generating vascular-like channels by tumor cells, independent of endothelial angiogenesis. Studies showed in glioblastoma, the proportion of VM to all vascular channels is associated with poor prognosis and higher invasiveness levels....
متن کاملNeovascularization in Glioblastoma: Current Pitfall in Anti-angiogenic therapy.
Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. However, the survival of patients with GBM has been dismal after multi-disciplinary treatment with surgery, radiotherapy, and chemotherapy. In the efforts to improve clinical outcome, anti-angiogenic therapy with bevacizumab (Avastin) was introduced to inhibit vascular endothelial growth factor (VEGF) mediated tumor ...
متن کاملA new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry.
Glioblastoma is one of the most angiogenic human tumours and endothelial proliferation is a hallmark of the disease. A better understanding of glioblastoma vasculature is needed to optimize anti-angiogenic therapy that has shown a high but transient efficacy. We analysed human glioblastoma tissues and found non-endothelial cell-lined blood vessels that were formed by tumour cells (vasculogenic ...
متن کاملVascular Mimicry: The Next Big Glioblastoma Target
Glioblastoma (GBM), a grade IV glioma classified by World Health Organization (WHO), is considered highly malignant, vascular and invasive subtype [1]. GBM is most lethal during first year after initial diagnosis despite surgical resection, radiotherapy and/or chemotherapy [1,2]. Median survival of patients diagnosed with GBM is only 12 to 15 months [1,2]. Antiangiogenic therapies (AAT) were us...
متن کاملEndothelial cell‐derived angiopoietin‐2 is a therapeutic target in treatment‐naive and bevacizumab‐resistant glioblastoma
Glioblastoma multiforme (GBM) is treated by surgical resection followed by radiochemotherapy. Bevacizumab is commonly deployed for anti-angiogenic therapy of recurrent GBM; however, innate immune cells have been identified as instigators of resistance to bevacizumab treatment. We identified angiopoietin-2 (Ang-2) as a potential target in both naive and bevacizumab-treated glioblastoma. Ang-2 ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2017